您好,欢迎访问我的资料记录
《四边形的内角和》课堂实录及教学反思
师:同学们,到目前为止,我们学过哪些四边形?
生1:长方形、正方形。
师:还有吗?
生2:平行四边形和梯形。
师:对,长方形、正方形、平行四边形和梯形它们都是特殊的四边形,除了这些特殊的四边形外,我们还应该知道一般的四边形。
(课件出示:四边形)
师:谁能说说,什么样的图形是四边形?
生:由四条线段首尾顺次相接围成的图形就是四边形。
师:我们知道三角形的内角和是180°,那么四边形的内角和具有什么特征呢?这就是我们今天要研究的“四边形的内角和”。
师:在数学上研究或者是探究某一问题时,往往会从简单的情况或者是从某种特殊情况入手,然后发现其隐含的规律或者方法,从而总结与归纳出一般规律。
师:今天我们研究四边形的内角和,就先从特殊的四边形——长方形和正方形入手去分析。
1.小组探究长方形和正方形的内角和。
(教师出示长方形和正方形,提出问题:你能用自己喜欢的方法求出长方形和正方形的内角和吗?)
生:长方形和正方形的四个角都是直角,所以它们的内角和就是90×4=360°,因此,长方形和正方形的内角和都是360°。
师:你能用自己的语言说说,上面求长方形和正方形的内角和运用了什么方法吗?
生:上面用计算的方法求出了长方形和正方形的内角和,因为长方形和正方形的每一个内角都是90°。
师:对,上面是用计算的方法求出了长方形和正方形的内角和。
2.探究平行四边形、梯形和一般四边形的内角和。
师:如果四边形是平行四边形、梯形或者是一般形状的四边形,你还能用求和的方法求出四个内角的和吗?
生:也可以,但是需要用量角器量出每一个内角的度数,再求和。
师:你还能想出其他的方法吗?
生:借助求三角形内角和时“剪、拼”的方法,我们可以把上述每种图形的四个角剪下来,看看它们各自能拼成什么形状的角?
师:太好了,这位同学的思路棒极了,下面就请同学们按照这位同学说的思路,动手剪一剪、拼一拼,看看你有什么新的发现?
(学生小组动手操作,然后小组汇报,全班交流)
生1:我们小组剪拼的是平行四边形的四个内角,通过剪拼发现,四个内角拼成了一个周角。
生2:我们小组剪拼的是梯形,发现结果四个内角也可以拼成一个周角。
生3:我们小组是剪拼的任意四边形,通过拼剪发现,四个内角也可以拼成一个周角。
(教师课件演示任意四边形的内角和剪拼过程)
师:一个周角是多少度呢?通过剪拼说明平行四边形、梯形和任意四边形的内角和是多少度?
生:一个周角是360°,通过剪拼说明平行四边形、梯形和任意四边形的内角和都是360°。
3.推理验证四边形的内角和是360°。
师:我们知道三角形的内角和是180°,那么同学们能否通过求三角形的内角和来求四边形的内角和呢?
(学生讨论,小组交流)
生:任意一个四边形都可以分为两个不同的三角形,这时四边形的四个内角和就转化为两个三角形的内角和,因为每一个三角形的内角和是180°,所以四边形的内角和是180×2=360°。
师:通过求三角形的内角和来求出四边形的内角和,这在数学上我们通常称什么方法?
生:把未知的数学问题转化为已知的数学知识,在数学上这叫“转化法”。
师:通过上面的学习,你在知识上有哪些收获?
生:我知道了四边形的内角和是360°。
师:如果给你一个任意四边形,那么它的内角和都是360°吗?
生:任意四边形的内角和都是360°。
师:你能说说为什么吗?你是通过什么方法得出这个结论的?
生:任意四边形都可以转化为两个三角形,而任意一个三角形的内角和都是180°,所以任意一个四边形的内角和都是360°。
师:通过本节课的学习,你有什么新的收获?
生1:把求四边形的内角和转化为求三角形的内角和,这是运用了数学的“转化法”。
生2:我知道了解答稍复杂的数学问题时,可以先从特殊情形入手分析。
课后反思:
“大胆猜想,小心求证”是科学探究的普遍规律,也是获取知识的一条重要途径。在学生已有知识(三角形的内角和是180°)的基础上,类比猜想四边形的内角和,通过测量、计算,讨论、交流、总结出四边形的内角和为360°的规律的结论。亲身体验所得的知识,会掌握得更加牢固。引导学生学会探究总结事物所含的数学规律,提高了学生综合运用知识去解决问题的能力。探究过程中,归纳、猜想和验证的数学思想渗透,使学生感悟到数学的神奇和奥妙,提高了学生学习数学的兴趣,增强了学好数学的信心。
您需要登录后才能评论 , 去登录
Powered by DS文库
Copyright © 我的资料记录 All Rights Reserved. 冀ICP备11005293号-10
暂时没有评论,评论一个吧?